FCM - Sustainable Communities Conference

Food Waste Diversion from Disposal

Geoff Rathbone, Vice President, Resource Recovery Windsor, Ontario February 2012

Progressive Waste Solutions (PWS)

117
solid waste collection operations

63 transfer stations

48
material recovery facilities

30 landfill sites
5 gas-to-energy systems

Leading collection operations in dense urban markets

Strategically located facilities
in close proximity to urban markets

Emerging Hub and Spoke System

Sources of Organic Feedstock

Source

- Residential Green Bin
- Full Serve Restaurants
- Quick Service Restaurants
- Grocery Stores
- Food Process
- Rendering/FOG
\% of Total
42-50\%
18-22\%
10-13\%
10-12\%
10-12\%
6-8\%

Organics Processing Options

Traditional Aerobic Composting

Anaerobic Digestion Basics

Co- Processing Opportunity

Industrial \& Commercial

- Organic Waste

Energy

Proprietary Technology

Water

Compost
\&
Fertilizer

Food Waste Diversion Exploding Across Canada

- Municipal Green Bin collection planned in:
- Calgary
- Greater Vancouver
- Montreal/Quebec City
- Winnipeg
- Remainder of Ontario
- Strong Interest from Commercial \& Industrial sources
- Restaurants/hotels
- Grocery and wholesale
- Food processing
- Co-Processing Opportunity
- Economy of scale by combining Municipal/Commercial sources
- Optimize recipe

Maximizing Diversion from Landfill

Cost Differential

Organic Food Waste Processing Costs

Waste Transfer/Disposal Facilities Well Positioned to Site Organic Processing

Infrastructure

- Potential to Share:
-Bio-gas utilization
-Wastewater treatment
- Management/operations

Land/Permit
-AD relatively small footprint

- Approx 4 acres
- Permit modification only

Co-Processing Opportunity

- Co- Process residential AND commercial sources
- Co- Compost AD Digestate and Yard waste
- Co- Refine landfill and AD biogas to Natural Gas
-On-site fueling
-Fleet conversion to CNG

Processing Options: Issues and Concerns

Parameter	Aerobic Composting	Anaerobic Digestion
Timeline for Implementation	\checkmark	\checkmark
Public or Private Ownership	\checkmark	\checkmark
Size and Capacity	\checkmark	$\checkmark \checkmark$
25 year life	\checkmark	$\checkmark \checkmark$
Financial/Affordability	\checkmark (low volume)	$\checkmark \checkmark$ (larger volume)
Feedstock Flexibility	\checkmark	$\checkmark \checkmark \checkmark$
Performance/Reliability	\checkmark	$\checkmark \checkmark$
High Quality End Products	\checkmark	$\checkmark \checkmark$
Competitive Procurement Process	\checkmark	\checkmark
Sustainability	\checkmark	$\checkmark \checkmark$
Environmental (e.g.: Odour, GHG	\checkmark	$\checkmark \checkmark$
reduction, waste diversion)	\checkmark	\checkmark
Technology selection	\checkmark	

The CNG Revolution !!

- Rapid Growth of CNG Waste Vehicles
- 70\% new Solid Waste Vehicles
- Surrey, B.C. (50 vehicles)
- Simcoe County, Ont. (40 vehicles)
- Challenges
- \$30K Extra/vehicle
- Maintenance Facility Upgrade Required
- Eg: explosion proof bays
- Special Certification of Mechanics
- Dedicated Fuel Station/Operator
- Benefits
- Fuel savings
- GHG reductions
- Lighter/quieter vehicles
- Potential to 'make' own fuel from AD or Landfill gas

Renewable Natural Gas From AD

- Renewable Fuel From Waste
- Typical truck $=10,000 \mathrm{~g} / \mathrm{yr}$ diesel
- 1 gal diesel = 4 M3 CNG
- Or... 40,000 M3/yr CNG
- 100K Tonne AD Plant $=7.5 \mathrm{M} \mathrm{M} 3 / \mathrm{yr}$ biogas
- @ 65\% CH4 = 5M M3/yr NG
- Therefore...
- 100K AD fuels waste 125 trucks

