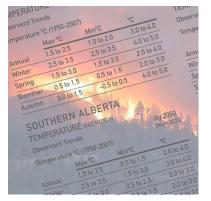

Institut de Prévention des Sinistres Catastrophiques Construction de resilient communities


Climate change information for adaptation

Climate trends and projected values for Canada from 2010 to 2050

By James P. Bruce March 1, 2011

TABLE OF CONTENTS

ISBN 978-0-9784841-7-0

I	INTRODUCTION	1
II	REPORT FORMAT	3
III	HOW TO INTERPRET AND USE THE TABLES	4
IV	CLIMATE TABLES BY REGION	4
	Coastal British Columbia Southern Interior British Columbia Northern Interior British Columbia Yukon and Mackenzie District (NWT) Southern Alberta Central Alberta Northern Alberta Southern Saskatchewan and Manitoba Northern Saskatchewan and Manitoba Northern Saskatchewan and Manitoba Northern Saskatchewan and Manitoba Northern Ontario Southern Ontario Eastern Ontario. Eastern Ontario, Ottawa Valley and Montreal Central and Northern Quebec and Labrador* East Nunavut (Baffin and Ellesmere Islands) New Brunswick and Prince Edward Island Nova Scotia Newfoundland* *climatic, not political, regions	5 8 11 13 15 18 21 23 25 28 31 33 25 28 31 33 36 38 41 44 47 49

V REFERENCE LIST	52
------------------	----

CLIMATE CHANGE INFORMATION FOR ADAPTATION for the INSTITUTE FOR CATASTROPHIC LOSS REDUCTION J. P. Bruce 18 Feb. 2011*

I INTRODUCTION

Many people postpone action to adapt their businesses and management activities to the changing climate because of uncertainties about future climatic conditions. It is true that the range of projected futures becomes rather large by the end of the century. This is due to uncertainties about future greenhouse gas emissions and the differences in results from various global climate models.

However, for many purposes, planning horizons are less than a century and modelled results are not very divergent out to 2050. In addition, anthropogenic factors, i.e. greenhouse gas increases, have been overwhelmingly dominant in driving changes in global and large scale regional, climate since about 1970. They will continue to dominate in the coming 4 decades. Thus, trends that have been measured and observed in climate-related factors over the past 4 decades are likely to continue or possibly intensify somewhat in the next 40 years. When extension of such trends is similar to projections to 2050 by climate models, event greater confidence can be placed in the estimates of future climate. An example of comparison between extrapolated temperatures in the Athabasca River basin and projections with three Atmosphere Ocean Global Climate Models with the A_2 (high) emission scenario, is shown in Fig. 1. (next page)

The highest emission scenario is the closest to observed trends. Recent information on GHG concentrations, emissions and impacts lead to the view that climate change is advancing more rapidly than estimated earlier. Global atmospheric CO_2 concentration increases averaged 1.6 ppm/year from 1970 to 2007, but 1.9 ppm/year from 2000 to 2007 (Levinson, 2008). From 1990 to 2000, the atmosphere's CO_2 increased at a rate of 3.1 gigatonnes carbon per year but from 2000 to 2008 the rate was 4.1gt C/year (IGBP, 2009).

At the same time the International Energy Agency in late 2007 reported that global energy use and greenhouse gas emissions have been rising very rapidly. It projects a 55% increase in world energy needs between 2005 and 2030 and a 57% increase in greenhouse gas emissions. This could be tempered by aggressive global efforts to reduce emissions, not evident to date. Of course, the recent economic downturn had a short term effect on this rate of change. It is estimated that in 2009 a reduction of about 1% in global emissions occurred, but 2010 emissions are again on a path to record highs.

*Note; This is a revised and up-dated version of the draft dated 18 March 2010 by Bruce and Egener.

A 57% increase to 2030 is a more rapid increase than the greatest increase in SRES emission scenarios of IPCC, which have been used in previous climate projections. The evidence in the climate system of the acceleration of greenhouse gas emissions and concentrations can be seen in several manifestations. The decline in ice cover in the Arctic has been more rapid than in any of the IPCC scenario modeled results. Ice melt in Greenland, and effects in Antarctica have recently exceeded the rates of change projected by IPCC.

The extrapolation of observed trends is most useful for temperature and factors closely related to it. For precipitation, influencing factors, such as changes in ice cover of lakes and oceans, need to be taken into account in extending trends. This has been done somewhat subjectively in the tables which follow.

This approach to the changing climate has been used successfully with a number of Canadian communities in diverse regions of the country. This report summarizes for 18 regions, the observed climate trends to date and some climate related factors. Projections are then given to 2050 of these key climate and climate-related factors. These related factors emphasize events or trends which result in hardship or damages or benefits, and are often felt most strongly in communities. An emphasis has been placed on extreme events when data and projections were available, since they often cause the largest damages and human disruptions. Where very limited Canadian data are available, trends in adjacent U.S.A., where much more such data have been available and analyzed, are cited.

It is hoped that this fairly straight forward presentation of information will assist in demystifying climate change to permit initiation of pro-active adaptation measures.

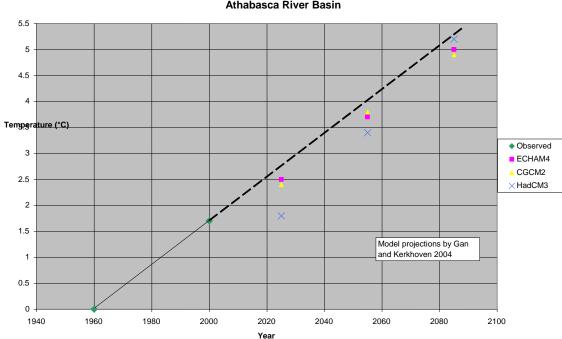


Figure 1 Temperature Trends and Projections Athabasca River Basin

II REPORT FORMAT

In each subsequent section for 17 regions of Canada the following format has been followed to the extent practical with available information and publications.

Region	Observed Trends	Projections to
		2050
e.g. Coastal British Columbia:	Temperature changes (seasonal)	
	Temperature thresholds	
	Precipitation changes (seasonal)	
	Ratio of snow to total	
	precipitation	
	Intense rain – frequency and	
	intensity	
	Winds	
	Freezing Precipitation	
	Riverflow	
	Break-up	
	Wildfires	
	Sea level rise	
	Storm surges and wave heights	
	Permafrost thaw	

Also for each region there are some notes to augment the information in the tables and where important a short description of natural modes of the climate system affecting year to year variations from the climate change trend. The latter addresses, frequently cited phenomena such as, El Niño-Southern Oscillation, North Atlantic Oscillation and Arctic Oscillation and their likely effects on the region.

III HOW TO INTERPRET AND USE THESE TABLES

- 1. These Tables are intended for initial assessment of adaptation priorities. For criteria for more detailed design of adaptation measures, the appropriate comprehensive references should be consulted. A list of references is provided with this set of tables.
- 2. Where a range of values is indicated, this is to indicate the range recorded or projected within this region.
- 3. All figures are positive or rising trends unless otherwise noted.
- 4. A subscript indicates the return period, i.e. the recurrence interval of events greater than a specific value, e.g. P₂₀, T₂₀.
- 5. >99% refers to an event of a magnitude that occurs in less than 1% of those events over the period of record.
- 6. Percentage (%) changes in precipitation are changes, over the period indicated, of % of long term averages (back to 1900 or earlier).
- For intense winter storms (under Wind) the Canadian Climate Model (CGCM2) projects, for South of 60°N, increases in numbers of intense events, but decreases in frequency of all storms. For regions North of 60°N both frequency of all storms and of intense storms are projected to increase. Intense storms have central pressure <970hpa.
- Lightning data associated with severe thunderstorms is only available since 1999 so trend analyses are not useful. However, in USA lightning related insurance losses rose sharply with temperatures greater than 20°C. Most wildfires in northern Canada and the boreal forest are set by lightning.
- 9. Projections of values from 2010 to 2050 are based upon a combination of:
 - i) Outputs of Atmosphere-Ocean climate models with the system forced by expected increases in greenhouse gases in the atmosphere, (A2 scenario high emissions), and
 - ii) extrapolation, with physical reasoning, of observed trends since the 1960s.
- 10. In some cases there is a range of projections available from the various climate models and estimates of future greenhouse gas emissions. In most cases, only the most likely values are given, often from an ensemble of models compiled by IPCC, but generally assuming a high emission scenario, consistent with recent observations.
- 11. While data are presented on annual, maximum and minimum streamflow trends and projections, it must be recognized that a major effect of climate change is a change in seasonality of flow regimes. For most small and mid-size rivers, this is usually manifest in greater winter flows, earlier freshet in spring and lower flows May to October.

IV CLIMATE TABLES BY REGION See following sections

REGION: COASTAL BRITISH COLUMBIA

Page 1

	OBSERVED (TRENDS)				BY 2050 (from 2010)	
TEMPERATURE	Max. °C Min. °C Annual 1 °C 1.5 °C Winter 0.5 0.5 to -1			°C 1.5 °C 1		
See Note 1 See Note 5	Spring Summer Autumn	0	.5 .5 .5	1.5 to 2 1.5 0.5	2 1.5 1	
	Warm Days	s >25°C	max.:	(1950-2007) 2/decade outh, 0 North	10 days 20 days	
PRECIPITATION	Precipitati	on (1950)-2007	<u>′)</u> %	%	
See Note 1	Annual		30%	Rain 20 to 6 to -50%	5 to 10%	
	Winter-10Spring30 to 40			10 15 -20S to 0 N		
	Summer5 to 15Autumn-5 to 10Ratio of Snow to Total			5		
	Precipitati					
	Annual-10Winter-9Spring-15Autumn6			-15 -12 -20 0		
	Intense Precipitation (1958-2007) Amounts of severe events +16%				P ₂₀ 15%	
	 (>99%) (adjacent U.S.A.) Frequency heavy rain amounts +12% (>99%) (adjacent U.S.A.) 				P ₂₀ →P ₁₀	

COASTAL BRITISH COLUMBIA

Page 2

WIND	Intense Winter St		(from 2010)		
See Note 2	(Central Press Over Northern Hen 2000) 1200 per year to 13	8-15% more frequent			
	Significant Wave 2000) 5 cm	<u>Heights (1950-</u>	+7cm		
RIVERFLOW	Dates of Spring b 2002) 15 days ear	30 days earlier			
	-20%				
See Note 3	Streamflow (196 Annual Minimum Daily Maximum Daily	% -20% -30 10			
SEA LEVEL		15 to 25cm			
SEA LEVEL	Mean (1993-2007) Relative Rise over Victoria	Note: Land			
See Note 4	Victoria Vancouver Prince Rupert El Nino Year up to	8cm 4cm 12cm	Subsidence Fraser Delta ~2cm/decade 3cm (El Nino)		

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

Note 4: Sea level and storm surges: With rising relative sea level, even though isostatic rebound of the land has minimized the effect except in Fraser River Delta, and increased frequency of intense winter storms (up to 15% by 2050) increased storm surge activity and water levels expected. These events are often associated with heavy rain events on land with reduced capability of discharge to sea and increased flooding (e.g. Saanich Peninsula, Nov. 2009.)

COASTAL BRITISH COLUMBIA

Page 3

Note 5: Annual variability above and below climate change driven trends is related to large-scale modes of the natural climate system. This region is especially affected by ENSO (El Nino-La Nina) and the Pacific Decal Oscillation (PDO). When PDO is in a warm phase and El Nino conditions develop, warmer, drier conditions with lower stream flow occur in Western Canada as departures from the global trend. Temperature trends in 1950-99 of 2.5°C were estimated in Western mountainous regions to have been 0.5°C less without a generally positive PDO. (Bonfils et al. 2008)

<u>REGION: BRITISH COLUMBIA SOUTHERN INTERIOR</u> Page 1

	OBSERVED (T		BY 2050 (from 2010)	
TEMPERATURE See Note 1 See Note 5	Annual1 to 2Winter0.5Spring1.5Summer1 to 2	°C Min. ° 2.5 °C 2.5 °C 2.5 °C 0 2.5 1.5 to 2.3 0 2.5 2.5 0 1.5 1.5 to 2.3 0 1.5 0.5 to 1.3	5	°C 2.5 1.5 2.5 2 1.5
	Growing Season: 10 to 20 d Severe heat wave		20 to 30 days 10 to 20 days 1 in 4 years	
PRECIPITATION	Dresinitation (405	0.0007)		
See Note 1	Precipitation (1950-2007) % Amount mm/yr Annual -10 to 25% Winter -10 to -25 Spring 30 to 40 Summer -10 to 30 Autumn 15 to 35			% 5% 10 to 15 10 to 15 -15 to -20 10 to 15
	Rates of Snow to	Total Precipitat	ion	
	(Trend 1950-			%
	Annual	-10 to -20		-15
	Winter	-10		-10
	Spring	-10 to -20		-15
	Autumn		0	
	Intense Precipitat Amounts of severe (>99 percentile Frequency heavy r	12%	P ₂₀ +10%) P ₂₀ →P ₁₀	
	(>99 percentil	e) (adjacent U.S.	4.)	

BRITISH COLUMBIA SOUTHERN INTERIOR

Page 2

	OBSERVED (TR	BY 2050 (from 2010)			
WIND	Intense Winter Sto				
	(Central Pressu	• •	8 to 15% more		
See Note 2	Over Northern Hem		frequent		
	Number 1200 t				
RIVERFLOW	Dates of Spring br	<u>eak-up</u> (1948-	25 days carlier		
	2002)	15 days earlier	25 days earlier		
See Note 3	Snow Pack - 1 Ap				
See Note 5		.0%	-20%		
	Streamflow (1967-		2070		
		%	%		
	Annual	-10 to -40%	-20 to -40%		
	Minimum Daily	20 to -30	-25 to -30		
	Maximum Daily	-40	-20		
	Low Flows: (19	963-2003)			
	Summer 7 day f	,	Continued		
	Significant dowr	nward trend	decrease		
GLACIERS	Glaciers (1995-20 -0.65m Water e	•	Loss ½ of volume		
FOREST	Observed Nationa	llv	Projections		
WILDFIRES	Additional 100,000		Continued increase		
AND INSECTS		1°C temperature increase (1970-			
	2000)	area burned			
See Note 4					
MOUNTAIN					
PINE BEETLE	9.2 million ha, in E and Central	B.C. Southern			

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

BRITISH COLUMBIA SOUTHERN INTERIOR

Page 3

Note 4: Wildfires: Approximately 80% of fires set by lightning. Lightning caused fires are projected to increase globally by 44% by 2100.

Note 5: Annual variability above and below climate change driven trends is related to large-scale modes of the natural climate system. This region is especially affected by ENSO (El Nino-La Nina) and the Pacific Decal Oscillation (PDO). When PDO is in a warm phase and El Nino conditions develop, warmer, drier conditions with lower stream flow occur in Western Canada as departures from the global trend. Temperature trends in 1950-99 of 2.5°C were estimated in Western mountainous regions to have been 0.5°C less without a generally positive PDO. (Bonfils et al. 2008)

REGION: NORTHERN INTERIOR BRITISH COLUMBIA PAGE 1

	OBSERVED (TRENDS)				BY 2050 (from 2000)
TEMPERATURE	Temperature °C	; (19) Max.		<u>7)</u> Min. °C	°C
	Annual	1 to		1.5 to 2	2 <u>°C</u>
See Note 1	Winter	2.5 t		2.5 to 3	3.5
		1.5 to		1.5 to 2.5	4
			0 1.5	1.5 to 1.5	2
			-0.5	0.5 to -0.5	1
	Temperature Ex				
	Frost free days		10 to		
	Growing Seasor	n >5°			30days
					20 days
	Draginitation (1)	050 0	007)		
PRECIPITATION	Precipitation (19	930-2	<u>2007)</u>	%	%
	Annual	-	F	to 10%	10%
See Note 1	Winter			-5 to 10	10
	Spring			0 to 10	10
	Summer			0 to 10	0
	Autumn			15	10
	Ratio of Snow t				0/
		50-19	98)	%	%
	Annual Winter			0 to -6	-5 -3
				0 to -3 -18	-20
	Spring Autumn			6 to 0	-20
	Intense Precipit	tation	n (1950	-2003)	
	Very wet days >95percentile 5 days/yr			P $_{20}$ 0 to 10% amt. P $_{20} \rightarrow$ P $_7$ to P $_{10}$	
*WIND	Intense Winter				
See Note 2	(Central Pressure <970hpa)				8 to 15% more
	Over Northern H		onere (1950-2000)	frequent
	Numbers 8	070			

NORTHERN INTERIOR BRITISH COLUMBIA

PAGE 2

	OBSERVED (TRE	NDS)	BY 2050 (from 2000)
RIVERFLOW	Dates of Spring brea 10 to 20 days change NE	10 days earlier	
See Note 3	Snow Pack - 1 April -20% to -40%	-	-30%
	Streamflow (1967-19 Annual Minimum Daily Maximum Daily Low Flows (7 day) sig trend	% -30% to 20 -10% to 20 -30% to 20	% 0% -10 0 Continue
FOREST WILDFIRES AND INSECTS See Note 4	Dbserved Nationally additional per 1°C temperature Regionally – 6% of ar 1957-1997	Projections Area burned increase by 50%	
MOUNTAIN PINE BEETLE	9.2 million ha, in B.0	.	

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

Note 4: Wildfires: Approximately 80% of fires set by lightning. Lightning caused fires are projected to increase globally by 44% by 2100.

REGION: YUKON and MACKENZIE DISTRICT

PAGE 1

	OBSERVED	BY 2050 (from 2010)		
	Temperature °	°C (1950-200	7)	
TEMPERATURE	1	Max. °C	Min. °C	°C
	Annual	1.5 to 2.5	1 to 2	3 to 4
	Winter	2.5 to 3.5	2.5 to 3.5	4 to 5
See Note 1	Spring	1.5 to 3	1.5 to 3	2 to 4
	Summer	0.5 to 1.5	0.5 to 1.5	2 to 3
	Autumn	0 to 1.5	-0.5 to 0.5	2 to 4
	<u> </u>			
	Temperature E		50-2007)	
	Frost free seas		10 to 30 days	30 days
	Growing seaso		10 to 20 days	25 days
		····· • •		
PRECIPITATION	Precipitation (1950-2007)		
		<u>~~~~</u> %		%
	Annual	0 to 35%		10 to 15%
See Note 1	Winter	0 to 40	Largest	15 to 20
	Spring	0 to 40	increases	10 to 15
	Summer	-10 to 10	in North	5 to 10
	Autumn	10 to 20		10 to 15
	Ratio of Snow			
	(19	950-2003)	%	%
	Annual	-10 to 1	0%	Chourfall increases
	Winter	0 to 5	5	Snowfall increase
	Spring	-15 to	0	up to 40%
	Autumn	0 to 1		Northern areas
	Intense Precip	itation (1958	8-2007)	
		0 mm: avera		
	2000)	P ₂₀ 10 to 15%		
	Very heavy >99	$P_{20\rightarrow}$ P_5 to P_{15}		
	Very heavy >99			
	(adjacen			
	above)			
	Freezing preci	•	n and drizzle)	
	(1953-2004) 5	5 to 20%		
				Increase
				Winter ~20%

YUKON and MACKENZIE DISTRICT

PAGE 2

		0701	
WIND	Intense Winter Stor	-	
See Note 2 and	Northern Hemisphere	e pressure	
4	(1950-2000)	8%	8 to 15%
	Coastal Storms numb	per 75% (1980-2004)	
RIVERFLOW	Dates of Spring brea	<u>ak-up</u> (1950-2005)	
	10 to 25 days earlie	er er	Continue earlier
	e.g. Dawson City (Yukon River)	
		0 in May: 1985-2005	
See Note 3	in April	· · · · · · · · · · · · · · · · · · ·	
	Streamflow (1967-19	996)	
		550)	
	Annual	-20%S to 7%N	10 to 30%
	Minimum Daily	0 to 20%	Mainly in April to
	Maximum Daily	-10 to 10%	July
	- Maximum Dully	10 10 10 /0	
SEA LEVEL			
See Note 4	Mean (1993-2007)	3.2/decade	15 to 25cm
PERMAFROST			
THAW	Some thaw in discont	30% of southern	
	areas	areas	
WILDFIRES	Area burned tripled fr	om 1960s to 1990s	~10 days longer
See Note 5	•		fire season

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. Southern region – heavy rain on snow, floods in spring more frequent.

Note 4: Sea level and storm surges: Sensitivity to sea level rise and storm surge is high to moderate in much of Beaufort Sea shoreline. Reduction of sea ice to protect shores from erosion and damages to continue and coastal land subsidence of 1.8 to 3 mm/yr exacerbates erosion. Annual number of open water storms on adjacent Alaskan coast averaged 15 (1950-1980) but 24 (1980-2004). Storm surges as high as 2m have been observed in areas near Tuktoyuktuk.

Note 5: Wildfires: Approximately 80% of fires set by lightning. Lightning caused fires are projected to increase globally by 44% by 2100.

REGION: SOUTHERN* ALBERTA

PAGE 1

	OBSERVED	TRENDS	BY 2050 (from 2010)	
TEMPERATURE	Temperature '	° <mark>C (1950-20(</mark> Max. °C	<u>)7)</u> Min. ⁰C	°C
	Annual	1.5 to 2.5	0.5 to 1.5	2 to 4
See note 1	Winter	2.5 to 3	1.5 to 3	3 to 4
	Spring	2.5 to 3	2.5 to 2.5	2 to 4
	Summer	0.5 to 2.5	-0.5 to 1.5	2 to 3
	Autumn	-0.5 to 0.5	-0.5 to 1.5	2 to 3
	Addinin	-0.5 10 0.5	-1.0 10 0.0	210 0
	Temperature	Extremes (19	50-2007)	
	Frost free days		-5 to 20	25 days
	days			30 days
	Growing Seaso	on >5 °C	15 to 30 days	-
PRECIPITATION	Precipitation			
			term average	
Coo moto 4	Annual	-20 to		0 to 10
See note 1	Winter	-15 to -5		10 to 15
	Spring	0 to :		5 to 15
	Summer	0 to -		-5 to -10
	Autumn	-5 to	0	0 to 5
	Ratio of Snow	/ to Total Pre		
		950-2003)	%	%
	Annual	-20 to	-5	-15
	Winter	0 to 3	3	-10
	Spring	-20 to	0	-20
	Autumn	-5 to	0	-10
	Interne Dress's	-itation /405/	2007)	
	Intense Precip			
0	P ₂₀ : 25 to 50 r 2000)	nin/uay. aver	aye (1901-	P ₂₀ : 10 to 15% severity
See note 6	,	frequency (ad	liacont LISA)	$P_{20} \rightarrow P_{10-15}$ frequency
	P>99%: 13% frequency (adjacent USA) P>99%: 15% amount (adjacent USA)			1 20-11 10-15 11 CQUCIICY
		(4		
WIND	Intense Winte	r Storms		
See Note 2	<970hpa centra			
	Northern Hem	isphere	8%	8 to 15%

*Roughly south of an E-W line through Red Deer

SOUTHERN ALBERTA

PAGE 2

	OBSERVED (TRE	BY 2050 (from 2010)	
RIVERFLOW	Dates of Spring brea Earlier date some s (10 to 15	Continue earlier By 30 days	
	Snow Pack - 1 April -20%		40% ???
See Note 3	<u>Glaciers</u> – (1965-200 -22% of mass	Continued loss	
	Streamflow (1967-19	-	0/
	Annual	%	%
	Annual Minimum Doily	-10 to -20 -30% to 20	-5 to -15 -10 to -20
	Minimum Daily Maximum Daily	-20 to -10	0
		-2010-10	
LIGHTNING	(1999-2008)		
Flash density	Average 0.5 to 3.5 fla	sh/km²/year	Increase 20%
See Note 5 See Note 7	Max 0.5 to 4 flash/km		
DROUGHT	(1900-2002) Palmer drought sever trend towards increas	Severe droughts twice as frequent	

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes. Fifty year return period maximum winds are 100 to 140 km/hr from Calgary region to extreme southwest.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. Generally winter flows increasing and summer and autumn flows declining. Flash floods in small basins becoming more frequent spring and summer.

SOUTHERN ALBERTA

PAGE 3

Note 4: Annual variability above and below climate change driven trends is related to large-scale modes of the natural climate system. This region is especially affected by ENSO (El Nino-La Nina) and the Pacific Decal Oscillation (PDO). When PDO is in a warm phase and El Nino conditions develop, warmer, drier conditions with lower stream flow occur in Western Canada as departures from the global trend. Temperature trends in 1950-99 of 2.5°C were estimated in Western mountainous regions to have been 0.5°C less without a generally positive PDO. (Bonfils et al. 2008) **Note 5: Most wild fires set by lightning.** Global estimate lightning increase by 44% in 21st century. (Price & Rind, 1994)

Note 6: P₂₀ signifies the precipitation likely to be equalled or exceeded only once in 20 years on average a long period.

Note 7: Hail is relatively frequent (5 to 8 days per year) east of the Rocky Mountain range in Southern and Central Alberta. However, in drought periods, such as 2001 and 2002, with drier air in lower levels of the atmosphere, hail is substantially less frequent.

REGION: CENTRAL* ALBERTA

PAGE 1

	OBSERVED	BY 2050 (from 2010)		
	Temperature		<u>17)</u>	
TEMPERATURE		<u>Мах. °С</u>	Min. °C	O°
	Annual	1 to 2.5	1 to 2.5	2 to 4
	Winter	1.5 to 3	1.5 to 3	3 to 4
See Note 1	Spring	2.5 to 3.5	1.5 to 2.5	3 to 4
	Summer	0.5 to 1.5	0.5 to 1.5	2 to 3
	Autumn	-0.5 to 0	-1.5 to -0.5	2 to 3
	Frost free seas		to 20 days	
	Growing se	ason >5°C	10 to 30 days	25 days
				30 days
PRECIPITATION	Precipitation	(1950-2007)	%	%
	Annual	-10 to -		5 to 10
	Winter	-5 to		5 to 10
See Note 1	Spring	-5 to		10 to 15
	Summer	-5 to -		0 to -5
	Autumn	-5 to		5 to 10
	Ratio of Snow	<u>v to Total Pre</u> 950-2003)	<u>cipitation</u> %	%
	Annual	-5 to -		-15
	Winter	0		-10
	Spring	-5 to -	15	-15
	Autumn	-5 to -		-5
	Intense Preci	pitation (1958	3-2007)	
	Spring heavy r			P ₂₀ 5 to 10% _{amount}
	5% per decade	e in frequency	over past	P ₂₀ →P _{10 to 15frequency}
	century			
	Freezing prec		n and drizzle)	
	average (1961			
	Precipitatio	Increase		
	increase up	o to 20% extre	me North	
WIND	Intense Winte	er Storms		
See Note 2	Northern Hemi			8 to 15%
		(1950-2000)	8%	
		1330-2000)	U /0	

*Approximately between East/West line and through Red Deer and through Fort MacMurray

CENTRAL ALBERTA

PAGE 2

	OBSERVED TRENDS	BY 2050 (from 2010)
RIVERFLOW	Dates of Spring break-up (1973-1999) 10 days earlier (Peace River)	20 days earlier
	Snow Pack - 1 April (1950-1997) -20%	-30%
See Note 3	<u>Glaciers – (1965-1997)</u> Average decrease 25% Streamflow (1967-1996) %	Continued decrease ~5%/decade %
	Annual-20Minimum daily-20 to 10Maximum daily-30 to -10	-20 -20 0 to -10
PERMAFROST THAW	Declining at higher elevations in western areas	Continue decline to even higher elevations
WILDFIRES and LIGHTNING See Note 4 See Note 5	National area burned increased 100,000km ² per ^o C warming (1970-2000)	Continued increase. Area burned increase 15%
DROUGHT	Palmer Drought Severity Index: significant increase in frequency and intensity over 20 th century	Continued more intense drought: doubled frequency of severe events

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

CENTRAL ALBERTA

PAGE 3

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

Note 4: Most fires set by lightning. Global estimate lightning increase by 44% in 21st century. (Price and Rind, 1994)

Note 5: Hail is relatively frequent (5 to 8 days per year) east of the Rocky Mountain range in Southern and Central Alberta. However, in drought periods, such as 2001 and 2002, with drier air in lower levels of the atmosphere, hail is substantially less frequent.

REGION: NORTHERN* ALBERTA

PAGE 1

	OBSERVED	BY 2050 (from 2010)		
	Temperature	°C (1950-200		°C
TEMPERATURE	Annual	Max. <u>°C</u>	Min. °C	_
	Annual	1 to 2.5	1 to 2.5	2 to 4
See Note 1	Winter	1.5 to 3	1.5 to 3	3 to 4
See Note 1	Spring	1.5 to 3	1.5 to 2.5	2 to 4
	Summer	0.5 to 1.5	0.5 to 1.5	2 to 3
	Autumn	0 to -1	-0.5 to -1.5	1 to 2
	Temperature			
	Frost free sea	son	10 to 20	25 days
	days			30 days
	Growing sease	on >5°C 10	to 30 days	
	Due static di	(4050 0005)	0/	01
PRECIPITATION	Precipitation		%	%
	Annual	0 to 1		5 to 10
Con Nata 4	Winter	<u> </u>		10 to 15
See Note 1	Spring	0 to :		10 to 15
	Summer	-5 to		-5 to 5
	Autumn	-5 to	5	0 to 5
	Ratio of Snov	v to Total Pre	cipitation	
		950-2003)	%	%
	Annual	-10 to	0	-10
	Winter	0		-5
	Spring	-5 to -	10	-10
	Autumn	-5 to -		0
	Intense Preci	pitation (1958	3-2007)	
	– no trend			P ₂₀ 10 to 15%
	P ₂₀ 25 to 50 i	$P_{20} \rightarrow P_{10 \text{ to } 15}$		
	Freezina prec	ipitation (rai	n and drizzle)	
	average (196			
	Precipitati	Little change		
	Rain:	on: <25hrs <10hrs		
WIND	Intense Winte		•	
See Note 2	Northern Hem			
		(1950-2000)	8%	8 to 15%

*North of an East/West line through Fort McMurray

NORTHERN ALBERTA

PAGE 2

	OBSERVED TRENDS	BY 2050 (from 2010)
RIVERFLOW	Dates of Spring break-up (1950-2005) Earlier date non-significant statistically	Continue earlier
	<u>Snow Pack</u> - 1 April (1950-1997) -20%	-25%
See Note 3	<u>Glaciers</u> – (1965-2004) – Central Alberta -22 to -25% mass balance (Peyto and Athabasca)	Continued loss
	Streamflow (1967-1996) % Annual -20 to 0% Minimum daily -10 to 20 Maximum daily -30 to 10	% -20 -20 -10
PERMAFROST THAW	In discontinuous permafrost areas	Continued thaw. Drying of peatland Increase active layer depth by 50%
WILDFIRES and LIGHTNING See Note 4	0.5 to 2 flashes/km ² /year (1999-2008) National area burned increases 100,000km ² per °C warming.	Increased lightning and fire incidence ~20%
DROUGHT	Palmer Drought Severity Index: significant increase in frequency and intensity over 20 th century	Continued more intense drought: doubled frequency

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

Note 4: Most fires set by lightning. Global estimate lightning increase by 44% in 21st century.

<u>REGION: SOUTHERN SASKATCHEWAN and MANITOBA</u> PAGE 1

	OBSERVED	BY 2050 (from 201				
	Temperature		0-200		0.5	
TEMPERATURE	Max. °C Min. °C			°C		
	Annual	1 to		0.5 to 2	2 to 4	
	Winter	1.5 to		1 to 3	3 to 4	
See Note 1	Spring	0.5 to		1 to 2.5	3 to 4	
	Summer	-0.5 to		-0.5 to 1.5	2 to 4	
	Autumn	-0.5	5	-0.5 to 1	1 to 2	
	T	F		F0 0007)	T 01.4	00
	<u>Temperature</u>	Extreme	es (19	<u>50-2007)</u>	T_{max20} : 2 to 4	
	- /				$T_{max20\rightarrow}T_{max10}$	
	Frost Free Day			to 30 days	25 days	
	Growing Days	>5 °C	-1	0 to 20	20 days	
				01		
PRECIPITATION	Precipitation	(1950-20		%	%	
	Annual			10 to 20	-5 to 10	
	Winter			10 to 15	0 to 15	
	Spring			10 to 15	5 to 15	
See Note 1	Summer		- ^	10 to 10	-10 to 10	
	Autumn		:	5 to 20	-10 to 10	
	Ratio of Snov	v to Tota	al Pree	cipitation		
		950-200		%	%	
	Annual		-5 to 0		-10	
	Winter			0	-10	
	Spring		-	10 to 5	-15	
	Autumn		-	5 to 10	-5	
	Intense Preci					
	Days with amounts in events >99% 15% (adjacent USA)				P _{20:} 5 to 10)%
		· •		,		,
	Days with hea				$P_{20\to} P_{10}\text{-}P$	15
		3% (adj				
	P ₂₀ 25 to 50m			901-2000)		
WIND	Intense Winte					
See Note 2	<970hpa centi		ule			
	Northern Herr (1950-2	•		8%	8 to 15%	

SOUTHERN SASKATCHEWAN and MANITOBA

PAGE 2

	OBSERVED TRE	BY 2050 (from 2010)	
RIVERFLOW	Dates of Spring bre	. ,	Continue continu
	Earlier date: non-s	agnificant	Continue earlier
See Note 3	Streamflow (1967-1	996)	%
and Note 4	Annual	-30 to -40%	-20
	Minimum Daily	-10 to 30%	-20
	Maximum Daily	-20 to -30%	-0
Permafrost	Occurring in mid prov	vince in discontinuous	Permafrost gone
Thaw	permafrost areas		from region with
			drying of peatlands
Lightning	Flash density avera 1.5 to 4 flash/km ^{2/} yr	ge (1999-2008)	increase

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

Note 4: An exception to declining flows is Red River through Winnipeg. Climate change induces greater moisture transport from Gulf of Mexico and more precipitation in the U.S. headwaters of the Red River in spring. This suggests increasing flood threats along the Red River.

REGION: NORTHERN SASKATCHEWAN and MANITOBA PAGE 1

	OBSERVED TRENDS					BY 2050 (from 2010)	
	Temperature	Temperature °C (1950-2007)					
TEMPERATURE	Max.	°C	Mi	n.°C		°C	
	Annual	0.5 t	o 2.5	0.5 to 1.5		2 to 3	
	Winter	0.5 t	o 1.5	0.5 to 1.5		3 to 4	
See Note 1	Spring	1.5 t	o 2.5	0.5 to 2.5		2 to 3	
	Summer		o 1.5	0.5 to 1.5		2 to 3	
	Autumn		o 1.5	-0.5 to 0.5		1 to 3	
	Temperature	Extren	nes (19	81-2007)			
	Frost Free day		100 (10	20		25 days	
	Growing Seas		s >5°C	-	20	15 days	
	g couo	<u></u>					
PRECIPITATION	Precipitation	(1950-2	2007)				
			/	%		%	
	Annual		-{	5 to 15%		0 to 15	
	Winter		-	10 to 15		5 to 20	
See Note 1	Spring		-{	5 to 15 E		15W to 25E	
	Summer			0 to 15		-5 to 15	
	Autumn		5 to 15			5 to 15	
	Ratio of Snov	v to To	tal Pre	cipitation			
		950-20		%		%	
	Annual		(D to 5 E		-5	
	Winter			0		-5	
	Spring		-1	0 to 10 E		-10	
	Autumn			0 to 5		0	
					_		
	Intense Preci	pitatio	n (1950	-2007)			
	Number of day				C	P ₂₀ : 10mm	
					(severity)		
	P ₂₀ average (1981-2000): 25 to 50 mm			$P_{20\rightarrow} \ P_{10\text{-}15}$			
						(frequency)	
WIND	Intense Winte						
See Note 2	<970hpa centi						
	Northern Hem	•	;	001		0.4- 450/	
	(1950-2	2000)		8%		8 to 15%	

NORTHERN SASKATCHEWAN and MANITOBA

PAGE 2

	OBSERVED TRENDS	BY 2050 (from 2010)
RIVERFLOW See Note 3 and footnote for	Dates of Spring break-up (1950-2005) Earlier date non-significant	Continue earlier Ice free season on Hudson Bay increases towards Iate November into December
southern Manitoba and Saskatchewan page 2	Streamflow (1967-1996) % Annual -20 to 10% Minimum Daily -20 to 10 Maximum Daily -30 to 10	% -10 -10 -15
SEA LEVEL	Mean (1993-2007) 3.2cm/decade	20cm
PERMAFROST THAW	In discontinuous permafrost areas	Throughout area with drying of peatlands
LIGHTNING FLASH DENSITY	0.5 to 2 flashes/sq.km/yr	Further increase
WILDFIRES	Regionally: >400,000ha average burned (1959-1997) Nationally: area burned increased by 100,000km ² per ^o C increase in temperature (1970-2000)	50% increase area burned

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

NORTHERN SASKATCHEWAN and MANITOBA PAGE 3

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

Note 4: Most fires set by lightning. Global estimate lightning increase by 44% in 21st century.

REGION: WESTERN NUNAVUT

PAGE 1

	OBSERVED	TRENDS	BY 2050
		(from 2010)	
	Temperature °	<u>C (1966-2003)</u>	
TEMPERATURE			3 °
	Annual	0.5 to 1.5/decade	2 to 4
	Winter	-0.5 to 1.5/decade	3 to 5
See Note 1	Spring	0.5 to 1.5/decade	0 to 3
	Summer	0 to 1.5/decade	1 to 3
See Note 5	Autumn	0.5 to 1.5/decade	3 to 6
	Temperature F	xtremes (1981-2007)	
	Frost days: -20) to -10	-20
	Heating degree	days: -300 to -500° days	-500° days
		aujo. 000 10 000 adyo	
PRECIPITATION	Precipitation %	%/decade	
		(1966-2003)	
	-	%	%
See Note 1	Annual	-10 to 15%	10 to 25
	Winter	-10 to 10	10 to 25
	Spring	-5 to 15	10 to 20
	Summer	5 to 15	10 to 15
	Autumn	-10 to 15	10 to 20
	Ratio of Snow	to Total Precipitation	
		950-2003) %	%
	Annual	10 to 30	-10
	Winter	0 to 10	5
	Spring	0 to 5	0
	Autumn	-5 to 10	-15
		itation (1958-2007)	
		6 days per decade	P _{20:} 10 to 20%
		m average 1981-2000	$P_{20} \rightarrow P_{10 \text{ to } 15}$
		pitation (rain and drizzle)	
	average (1961-		
	Precipitation		8% increase/decade in
	Rain:	<10hrs	spring
WIND	Intense Winter Sto		
See Note 2	<970hpa central p		
	Northern Hemis	•	
	(1	950-2000) 8%	8 to 15%

WESTERN NUNAVUT

PAGE 2

	OBSERVED TRENDS	BY 2050 (from 2010)
RIVERFLOW	Dates of Spring break-up (1950-2005)	Continue earlier
	Earlier date non-significant	especially in western areas
See Note 3	<u>Snow Pack</u>	As ice free season on Hudson Bay and Beaufort Sea increases, greater snow pack will develop in early winter in eastern mainland areas and western archipelago.
	<u>Streamflow (1967-1996)</u>	
	<u>%</u>	%
	Annual 10 to 30%	10 to 30
	Minimum daily -10 to 30	0 to 10
	Maximum daily 15 to 30	20 to 30
	In mainland area	
SEA LEVEL See Note 4	Mean (1993-2007) 3.2cm/decade	15 to 25cm
PERMAFROST THAW	Initial thawing in discontinuous permafrost areas.	Continuous permafrost becoming discontinuous
GLACIERS	Mass loss Arctic archipelago 25km ³ /year (1995-2000)	Increase in loss of mass

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

Note 3: Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005.

WESTERN NUNAVUT

PAGE 3

Note 4: Sea level and storm surges: Sensitivity to sea level rise and storm surge is high to moderate on the Beaufort Sea coastline much of which is subsiding. Sea ice to protect shores from erosion and damages is being reduced and frequency of severe storms increasing.

Note 5: Re Arctic Archipelago: The most completely analyzed climate record in the Canadian Arctic archipelago is for Eureka on Western Ellesmere Island at 79.98°N and 85.93°W. This is near the dividing line between Western and Eastern Nunavut. Observations taken 7 times a day from 1953 to 2007 reveal a strong reversal of temperature trends in the early 1970s. Temperatures were falling from 1960 to 1972 but have shown a strong rise since then, with a trend of +0.88 degrees per decade. Winter trends since 1972 have been 0.67 degrees/decade, spring: 1.14 degrees/decade, summer: 0.42 degrees/decade and autumn: 1.25 degrees/decade. Similar annual trends were found for 11 stations globally, North of 75°N, by the Goddard Institute for Space Studies. With large scale climate change driven overwhelmingly by greenhouse gases since about 1970, it can be assumed that the observed rising trend since 1972 will continue. The falling temperature trend from 1953 to 1970 was due probably to internal variability through the Arctic and North Atlantic Oscillations. Thus for indications of future trends the warming of the past approximately 4 decades is likely to continue and accelerate as climate models suggest and as more ice disappears from the surrounding seas. Unfortunately for this analysis published trend data for elsewhere in the Canadian Arctic is for 1900 to 2007 and 1950 to 2007 (Vincent and Mekis 2009) which include the cooling phase and the greenhouse gas driven warming and so substantially underestimates current and projected warming rates for the next 4 decades.

REGION: NORTHERN ONTARIO

PAGE 1

	OBSERVED TRENDS					BY 2050 (from 2010)
TEMPERATURE	<u>Temperatu</u>	<u>ire °C</u> Ma		07) °C Min. °(C.	°C
	Annual		to 2.5 S	0.5 N to 2.	55	2 to 5
See Note 1	Winter		to 2.5	0.5 to 2.		4 to 6N 2 to 4S
	Spring		to 3.5	1.5 to 2.		2 to 4
	Summer		to 2.5	-0.5 to 1.		2 to 4
	Autumn		to 1.5	-1.5 to 1		2 to 4
	Temperatu					T _{max20} 2 to 4°C
	Frost free s			to 20 days	i	T _{min20} 4 to 6°C 20 days
	Warm days	T _{max} >	25 °C: 10) to 15 days	6	15 days
PRECIPITATION	Precipitation	on (195	<u>50-2007)</u>	• (
	%			%		
See Note 2	Annual			to 20		5 to 15
See Note 2	Winter) to 5		20 to 30N 10 to 20S 10 to 20
	Spring) to 5		0 to 10
	Summer		0 to 10 0 to 15			0 to 10
	Autumn		01	0 15		
	Ratio of Sr	ow to	Total Dr	ocinitation		
	Ratio of SI		-2007)	%		%
	Annual	(1350	-5 to			-15
	Winter		0 to			-10
	Spring		-6 to			-5
	Autumn		-3 to			-15
	Intense Pro			<u>8-2007)</u>		
	Amounts in severe events (>99%): 31% (adjacent USA)				P ₂₀ : 5 to 10%	
	```	•		,		severity
	Frequency heavy rain amounts (>99%): 27% (adjacent USA)				P ₂₀ →P _{10 to 15} frequency	
	Number of days with amounts $\ge 95^{\text{th}}$					почисноу
	percentile: 3 to 6					
	Freezing p		ation (ra	in and driz	zle)	
	average (1	-	•		,	60 to 85% increase
	Precipit	ation:	<35hrs	i		in freezing rain
	Rain:		<10hr	S		events

#### NORTHERN ONTARIO

PAGE 2

	OBSERVED TREM	BY 2050 (from 2010)			
WIND	Intense Winter Storn				
See Note 2	Northern Hemisphere	8 to 15%			
	<970hpa central pre	<970hpa central pressure 8%			
RIVERFLOW	Dates of Spring breat Earlier, mostly signif	Earlier still			
See Note 3	<u>Snow Pack</u>	As ice free season on Hudson and James Bays increases towards late November and into December, greater snow pack will develop in early winter in coastal areas.			
	Streamflow (1967-19	%			
	Annual	-40 to 10	-20		
	Minimum Daily	-30 to 10	-20		
	Maximum daily	-40 to 10	-10		
Forest Fires	Area burned increased 27% from 1981-1990 to 1991-2000 (But large fire year 1980)		50 to 500% increase in area		
		,			
Permafrost and Peatlands	Thawing evident Southern area		Greatest impact Northern area with peatlands drying out		

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970's event recording may have been less thorough than in 1990s. Data base extends only to 2005. Spring floods earlier but summer rain – induced floods more frequent.

# **REGION: SOUTHERN ONTARIO**

## PAGE 1

	OBSERVED (TRENDS)			BY 2050 (from 2010)	
TEMPERATURE	<u>Temperatur</u>	°C			
	Annual	Max. °C	Min. °C 0.5 to 1.5	2 to 3.5	
	Winter	0.5 to 1	0.5 to 1.5	2 to 3.5	
See Note 1	Spring	0.5 to 1.5	0.5 to 1.5	2 to 3.5	
	Summer	0.5 to 1.5	1.5	2. to 3	
	Autumn	-0.5 to -1	0.5	2 to 3	
	Temperatur				
See Note 6	Temperature Extremes (1950-2007) Frost free days 0 to 30			25	
	Growing day	20			
	Toronto	Double			
			· · ·	$\begin{array}{c c} T_{max20} & 4^oC \\ T_{max20 \rightarrow} & T_{max10} \\ (i.e. \ double \\ frequency) \end{array}$	
	Drosinitatio	m (40E0 2007)			
PRECIPITATION	Precipitation (1950-2007)			%	
	(compared to long term average) Annual 10 to 20%: 1.5 to			70	
See Note 1		5mm/decade	10	5	
	Winter 0 to 3mm/decade most in lee				
	of Gt. Lakes		5 to 20		
				10 to 15	
	Summer (			0 to 10	
		1.5 to 3mm/deca	de Annual	0	
	Ratio of Snow to Total Precipitation				
	Annual	(1950-2007) -1.5%/deca	de	-5 to -10%	

#### **SOUTHERN ONTARIO**

#### PAGE 2

Precipitation cont'd See Note 5	Intense Precipitation $P_{20} = 50$ to 75 mm: aSeverity of precipitation(>99%)31% (adjace)	P ₂₀ 10% Increase severity	
	Greatest % increase	% (adjacent U.S.A.)	$P_{20} \rightarrow P_{10}$ (double in frequency)
Precipitation cont'd	Freezing precipitatio average (1961-1990) Precipitation: 5 Rain:		>6 hr events: 40% over frequency of (1965-2005)
WIND See Note 2 and 4	Intense Winter Storn (Central Pressure Over Northern Hemis Numbers 8%	8 to 15%	
RIVERFLOW	Dates of Spring break-up (1948-2002) Earlier – not significant		15 days earlier
	Ice Cover (1973-20) Great Lakes – average 30% to 15% Hurd 33% to 10% Erie	Great Lakes Winter Ice Cover Close to zero	
See Note 3 See Note 5	Streamflow (1967-19 Annual Minimum Daily Maximum Daily	%           10 to -20           10 to -20           -10 to -30	% -10 -20 -10 to 10

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes. Ontario recorded 29 tornadoes in 2006 and again in 2009 – long term average is 11.

### SOUTHERN ONTARIO

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. (See Note 5)

**Note 4: Storm surges:** Trends towards reduced ice cover and stronger winds over Great Lakes increase incidence of damaging storm surges. e.g. Average Wind Lake Superior increased 4.5 to 4.9m/sec from 1985 to 2007.

**Note 5: Intense Precipitation:** 7 flood-producing heavy rain events Toronto area (1987-2007) all >P₂₀ from previous records. Rain intensities greatest seasonal increase in Spring over southern Ontario. Severe flash floods - Stratford, Peterborough, Toronto, Hamilton etc. (2000-2009).

Record observed short duration rain intensities: Tobermory Cypress Lake: 60 min 112mm, two hour 118mm (2003) Toronto North York: 15 min 66mm, 30 min 90mm, 2 hour 132mm (2005) Upper Grand River basin: 1 day >200mm (2004) Peterborough (Trent University), one day 240 mm (2004)

**Note 6:** In some places near the Great Lakes little change or declines in number of hot days  $T_{mas}>30^{\circ}C$  are due to cooler waters of the lakes in spring and summer.

## REGION: EASTERN ONTARIO, OTTAWA VALLEY and MONTREAL PAGE 1

	OBSERVED	TRENDS	BY 2050 (from 2010)	
TEMPERATURE	Temperature			00
		Max. °C	Min°C	°C
See Note 1	Annual	0.5 to 1.5	0.5 to 1.5	2.5 to 4
See Note 1	Winter	0.5 to 1.5	0 to 1.5	3 to 4
	Spring	0.5 to 1.5	0.5 to 1.5	3 to 4
	Summer	1 to 1.5	1.5 to 2	2 to 4
	Autumn	-0.5 to 0.5	-0.5 to 0.5	2 to 3
	Temperature	Extremes (19	50-2007)	
	Frost-free day		0 to 30	25 days
	Growing sease	on 10	0 to 20 days	20 days
PRECIPITATION	Precipitation	(1050-2007)		
FRECIFITATION	Frecipitation	<u>(1930-2007)</u> %		%
	Annual	5 to 15	5%	5 to 15
See Note 1	Winter	-5 to 1		10 to 15
	Spring	5 to 1		15 to 20
	Summer	0 to 1		0 to 10
	Autumn	0 to 1		0 to 10
	Patia of Snow	v to Total Bro	cipitation	
	Ratio of Snov	950-2007)	%	%
	Annual	0 to -10		-10 to -20%
	Winter	0 to -		-15
	Spring	0 to -'		-15
	Autumn	0 to 9		-5 to -10
		·		
	Intense Preci			
		75 mm (avera	• /	$P_{20}$ : amount 5 to 10%
	Greatest 1 day rainfall 1950-2007 trend			$P_{20} \rightarrow P_{10 \text{ to } 15}$
	15mm SE to -10mm NW Number of days with rainfall ≥ 95 th			(frequency)
	percentile 6SE			
	Freezing precipitation (rain and drizzle) average (1961-1990)			Events >6hr duration
	• •	,	nnual average	Winter(DJF) 65%
	Rain:		nual average	Nov. & Spring 0

### EASTERN ONTARIO, OTTAWA VALLEY and MONTREAL

PAGE 2

	OBSERVED TRE	NDS	BY 2050 (from 2010)
WIND	Intense Winter Stor	<u>ns    </u> <970hpa	
See Note 2	central		
		pressure	
	Northern Hemisphere	;	8 to 15% more
	(1950-2000)	8% more frequent	frequent
RIVERFLOW	Dates of Spring brea	<u>ak-up</u> (1950-2005)	
	Earlier date non-sig	Inificant	Continue earlier
	Streamflow (1967-19		
		%	%
	Annual	-10 to -30	-10
	Minimum Daily	10 to -20	-10
See Note 3	Maximum Daily	-20	0

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. Increased frequency of flash floods in small watersheds, spring and summer.

**Note 4: Intense Precipitation:** Recent one-day intense event Ottawa (M-C Airport) 137mm (Sept.2004).

## **<u>REGION: CENTRAL and NORTHERN QUEBEC and LABRADOR</u> PAGE 1**

	OBSERVE	BY 2050 (from 2010)		
TEMPERATURE	Temperatur	<u>e °C (1950-20</u> Max. °C	<u>07*)</u> Min. °C	°C
	Annual	0.5 °C	-0.5 to 1.5 °C	
See Note 1	Winter	-0.5 to -1.5	-0.5 to 1.5	5
	Spring	0.5	-0.5 to 1.5	3
	Summer	0.5 to 1.5	0.5 to 1.5	3
	Autumn	1.5	1.5	3.5
	Autumin	1.5	1.5	5.5
		e Extremes (1		Days
	Frost free da		to 30	10 to 30
	Growing day	/s (>5 °C) 20	to 30	20 to 30
PRECIPITATION	Precipitatio	<u>n (1950-2007)</u>		
			%	%
	Annual		6 ~100mm	10 to 15
	Winter	-5 to 15		5 to 20
See Note 1	Spring	15 to 25		10 to 20
	Summer	0 to 15		0 to 10
	Autumn	10 to 35		0 to 20
		<u>ow to Total Pr</u>	ecipitation	
		(1950-2007)		
	Annual	10%		-10 to 10%
	Intense Pre	cipitation (195	58-2007)	
	P ₂₀ 25 to		<u> </u>	P ₂₀ 10 to 15%
			in and drizzle)	
	average (19			
	Precipita	Increasing		
	Rain:	_		
WIND	Intense Win			
See Note 2				
	Northern He (1950-2		8%	8 to 15%

* Note: North East parts of this region were cooling from 1950 to early 1990s and warming since. See Note 5 for explanation.

# CENTRAL and NORTHERN QUEBEC and LABRADOR

PAGE 2

RIVERFLOW	OBSERVED TRENDS Dates of Spring break-up (1948-2002)	BY 2050 (from 2010) Continue earlier
See Note 3	Earlier date non-significant	especially in western areas As ice free season on Hudson Bay increases towards late November to December, greater snow pack will accumulate in early winter in western areas.
	<u>Streamflow (1967-1996)</u>	increases
	Annual0 to 20%Minimum Daily-10%Maximum Daily-10%	Annual and Maximum Continued decrease minimum
SEA LEVEL See Note 4	Mean (1993-2007) 3.2cm/decade	15 to 25cm
PERMAFROST THAW	Occurring in discontinuous permafrost areas	13 of 14 community airports threatened with disruption. Greatest impact James Bay lowlands
WILDFIRES	National: Additional 100,000km ² burned per ^o C average temperature increase - 1970-2000. Regional average 400,000ha. (1959-1997) area burned	50% increase in area burned

#### CENTRAL and NORTHERN QUEBEC and LABRADOR PAGE 3

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. Flash floods in small watersheds more frequent with rain on snow events spring and rain events in summer.

**Note 4: Sea level and storm surges:** Sensitivity to sea level rise and storm surge is high to moderate in much of Ungava Bay, and a few embayments in Northern Labrador. Sea ice to protect shores from erosion and damages gradually reduced on Hudson Bay and other coasts. While much of St. Lawrence North Shore is rising, erosion with reduced ice and storm surges is increasing problem (see N.B. and P.E.I.). Higher sea levels extend up St. Lawrence River estuary. For a 20cm increase in sea level (by 2050) a 14cm rise expected at Quebec city and Rimouski. By then damaging storm surges at Rimouski would be 3 times more frequent.

**Note 5: Newfoundland and Labrador and Eastern Arctic:** The North Atlantic Oscillation (NAO), linked to the Arctic Oscillation (AO), is a mode of the internal variation of the global climate system that periodically changes from positive to negative. In its positive phase it brings colder water and air to coastal regions of Labrador and Newfoundland with strong north-easterly winds. The negative phase of NAO brings warmer conditions with warmer, drier winters especially in eastern coastal regions. Temperature trends from 1950 to 1998 reflect a mainly positive NAO phase. There is a hint in climate model outputs that positive NAO may be more frequent in a greenhouse gas forced climate. Thus, general warming in inland (western) parts of Newfoundland and Labrador are likely to be faster than that felt along the east coast.

PAGE 1

	OBSERVE	D TRENDS	BY 2050 (from 2010)	
	Temperature	°C (1950-200		
TEMPERATURE		Max. °C		°C
	Annual	0	0 to 0.5	2 to 4
	Winter	-0.5 to 0.5	-0.5 to 0.5	3 to 4
See Note 1	Spring	-0.5 to 0.5	-0.5 to 0	2 to 4
	Summer	0.5 to 0	0.5 to 0	1 to 2
See Note 5	Autumn	1 to 0	1.5 to 0	3 to 4
	Frost Free Se days later Heating degre	<u>Extremes (19</u> ason: Start -10 ee days: -100 f <u>Trends - Eure</u> 0.88°C/dec. 0.67°C/dec 1.14°C/dec 0.42°C/dec 1.25°C/dec	0days, End 30 to -500	20 days -300 degree days As above
PRECIPITATION		(1950-2007)		%
	Annual Winter	10S to 3		10 to 25 10 to 25
See Note 1	Winter Spring	-20S to 4		10 to 25
	Summer	15S to 2		5 to 10
	Autumn	20S to 2		15 to 35
	Ratio of Snov	w to Total Pre 1950-2003)		
	Annual	0 S to 5	5 N	0
	Winter	15		5
	Spring	0		-5
	Autumn	10 S to	0	
See Note 3	P ₂₀ 25 to	<b>ipitation (1981</b> 50 mm S 10 erage values)	$P_{20}$ 10 to 20% $P_{20} \rightarrow P_{7 \text{ to } 15}$	

	EASTERN NUNAVUT PAGE 2	
PRECIPITATION Cont'd	Freezing precipitation (rain and drizzle) average (1961-1990) Precipitation: <25hrs Rain: <10hrs Trend: 5 to 20% (1953 to 2004)	8% Increase/decade especially spring
WIND See Note 2	Intense Winter Storms Northern Hemisphere (1950-2000) 8%	8 to 15%
RIVERFLOW	Dates of Spring break-up (1950-2005) Earlier date non-significant	Continue earlier
		Continue earlier
See Note 3	<u>Streamflow (1967-1996)</u> Annual Minimum Daily NO DATA Maximum daily	Decrease autumn, Increase spring
SEA LEVEL See Note 4	Mean (1993-2007) 3.2cm/decade	15 to 25cm
PERMAFROST THAW	In discontinuous permafrost areas	Continuous permafrost becomes discontinuous in many areas.
GLACIERS	Mass loss Arctic archipelago 25km ³ /year (1995-2000)	Increase in loss of mass

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. Increasing frequency heavy rain or snow, spring and summer, Baffin Island causing floods, e.g. Pangnirtung, June 2008.

### EASTERN NUNAVUT (Baffin and Ellesmere Islands)

#### PAGE 3

**Note 4: Sea level and storm surges:** Sea ice to protect shores from erosion and damages being reduced.

Note 5: Re Arctic Archipelago: The most completely analyzed climate record in the Canadian Arctic archipelago is for Eureka on Western Ellesmere Island at 79.98°N and 85.93°W. This is near the dividing line between Western and Eastern Nunavut. Observations taken 7 times a day from 1953 to 2007 reveal a strong reversal of temperature trends in the early 1970s. Temperatures were falling from 1960 to 1972 but have shown a strong rise since then, with a trend of +0.88 degrees per decade. Winter trends since 1972 have been 0.67 degrees/decade, spring: 1.14 degrees/decade, summer: 0.42 degrees/decade and autumn: 1.25 degrees/decade. Similar annual trends were found for 11 stations North of 75°N by the Goddard Institute for Space Studies. With large scale climate change driven overwhelmingly by greenhouse gases since about 1970, it can be assumed that the observed rising trend since 1972 will continue. The falling temperature trend from 1953 to 1970 was due probably to internal variability through the Arctic and North Atlantic Oscillations. Thus for indications of future trends the warming of the past approximately 4 decades is likely to continue and accelerate as climate models suggest and as more ice disappears from the surrounding seas. Unfortunately for this analysis published trend data for elsewhere in the Arctic is for 1900 to 2007 and 1950 to 2007 (Vincent and Mekis 2009) which include the cooling phase and the greenhouse gas driven warming and so substantially underestimates current and projected warming rates for the next 4 decades.

Note 6: In recent years, a surface wind of 120 km/hr has been observed at Iqaluit, and 132 km/hr at Pangnirtung (Feb. 2010). Both were influenced by downslope terrain.

## **<u>REGION: NEW BRUNSWICK and PRINCE EDWARD ISLAND</u> PAGE 1**

	OBSERVED (TRENDS)				BY 2050 (from 2010)	
TEMPERATURE	Temperatu	re °C (19	50-200	7)		
		Max.		Min.	°C	°C
	Annual	- 0.5 to	0.5	-0.5 to	0.5	2.5
	Winter	-1.5 to	0.5	-0.5 to	0.5	3
See Note 1	Spring	0 to (	).5	0 to 0	.5	2.5
	Summer	0.5	5	0.5 to	1.5	2 to 3
	Autumn	-0.5	5	0 to 0	.5	2.5
	<u>Temperatu</u>					
	Frost free		10 to 3	-		20 days
	Growing	season >5	5°C: 10	to 20 day	S	20 days
						T _{max20} : 2 to 4 °C
						T _{min 20} : 4 to 6 °C
	<b>D</b>	(1050)				
PRECIPITATION	Precipitation	on (1950-)	<u>2007)</u>	0/		0/
				<u>%</u>		%
See Note 1	Annual			20 to 20		0 to 10
	Winter			5 to -10		0 to 10
	Spring			5 to 10		5 to 15
	Summer			10 to 10		-5 to 10
	Autumn 5 to 15			0 to 5		
	Ratio of Sr	ow to To	tal Proc	vinitation		
		(1950-20				
	Annual		0 t	o 5		- 10
	Winter		0 t	o 5		-10
	Spring		0 t	o 5		- 10
	Autumn		0 t	o 5		-10
	Intense Precipitation (1958-2007) For NB					
	Amounts of Precipitation in severe Events					
	(>99 percentile) 67% (adjacent USA Maine)				P ₂₀ 10%+	
					(severity)	
	Frequency heavy daily rain				$P_{20} \rightarrow P_{10 \text{ to } 15}$	
	(>99 perce	entile) 5	58% (a	djacent U	SA)	(frequency)

### NEW BRUNSWICK and PRINCE EDWARD ISLAND

PAGE 2

	OBSERVED (TR	ENDS)		BY 2050 (from 2010)
WIND	Intense Winter Sto 1950 to 2000		re	
See Note 2	Numbers			8 to 15%
See Note 2	Significant Wave H	leights (1950-2000	))	
	2 0		-	5 cm
	Hurricanes (June	to Nov.)		More frequent intense events
RIVERFLOW	Dates of Spring break-up (1948-2002) Several times causing ice jams and floods			Continued multiple breakups Average 5 days earlier
	<u>Streamflow (</u> 1967- Annual	<b>1996)</b> % -30%		-30%
See Note 3	Minimum daily Maximum daily	-20 to -30 -20 to -30		Lower minima
SEA LEVEL	Mean (1993-2007) · (Also land subsiding			15 to 25cm
See Note 4	Storm Surge Souti >3.6M (2000)	>4m 1 in 20 yrs >3.6m 1 in 2 yrs		
FREEZING PRECIPITATION	Average (1961-199 Precipitation (rain + Rain:	,		Little change but more in winter, less in spring.

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

**Hurricanes or hurricane spawned storms,** more frequent in Atlantic Provinces, as water temperatures in source region increases (2°C by 2050). Path of hurricanes unlikely to change but more intense storms will survive the long path from source regions in southern North Atlantic.

## NEW BRUNSWICK and PRINCE EDWARD ISLAND PAGE 3

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. Flash floods in small watersheds increase spring and summer, due to heavy rains, and in autumn with more frequent hurricanes.

**Note 4: Sea level and storm surges:** Rising relative sea level plus increase in frequency of intense winter storms and hurricanes suggest much more frequent storm surge flooding in future as indicated in tables.

# **REGION: NOVA SCOTIA**

# Page 1

	OBSERVE	BY 2050 (from 2010)		
TEMPERATURE	Tomporature			
TENTERATORE	Temperature	<u>∍ °C (1950-20</u> Max.  °C	Min. °C	°C
	Annual	-0.5 to 0.5	-0.5 to 0.5	2 to 3
	Winter	0 to -0.5	-0.5 to -1	2 to 4
See Note 1	Spring	0	0.5	2
	Summer	1	1	2 to 3
	Autumn	-0.5 to 0	0 to 0.5	2 to 3
	-			
		e Extremes (1		days
	Frost free day	ys	10 to 20	20
	Growing Soo	son 1	0 to $20$ days	
		3011 1	0 10 20 0495	15
				10
PRECIPITATION	Precipitation	n (1950-2007)		
		· · · · · · · · · · · · · · · · · · ·	%	%
	Annual	5 to 30% of	long term	
See Note 1		avera	age	0 to 10
	Winter	-5 to	5	0 to 10
	Spring	15 to	20	10 to 15
	Summer	-5 to	o 5	0 to 5
	Autumn	5 to		10 to 15
		w to Total Pro		
	· · · · · · · · · · · · · · · · · · ·	(1950-2003	%	%
	Annual	0	to 5	-8
	Winter		5	-5
	Spring		5	-5 -5
	Autumn		5	
	Intense Prec	ipitation (195	8-2007)	
	P ₂₀ 50mm to			
	Days with sev	P ₂₀ : 5 to 10%		
	(>95pe	(Severity)		
		P ₂₀ →P ₁₀₋₁₅		
	(See Hurrica	(frequency)		
	Freezing pre			
	average (196		-	Little change,
		tion: 50 hours		more winter
	Rain:	25 hou	15	less in spring

### NOVA SCOTIA

#### PAGE 2

	OBSERVED (TR	ENDS)	BY 2050
			(from 2010)
WIND	Intense Winter Sto	rms <970hpa central	
	Northern Hemisphe	re pressure	
See Note 2	8%	(1950-2000)	8 to 15%
	Significant Wave H	<u>leights (1950-2000)</u>	
	2 0	m	5cm
See Note 2	Hurricanes		More frequent
	(June to Nov.)		intense events
RIVERFLOW	Dates of Spring br	<u>eak-up</u> (1967-1996)	
	Non significan	t delay	3 days earlier
	Streamflow (1967-	1996) %	%
	Annual	-20 to -30	-20
See Note 3	Minimum daily	-30W to 30E	-15 to 10
	Maximum daily	-10 to 20	10
SEA LEVEL	Mean (1993-2007)	+3.2cm/decade	15 to 25cm
See Note 4			

Note 1: Ranges in observed and projected values indicate differences over the region.

**Note 2: Wind-disaster records of Public Safety Canada** indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes.

**Hurricanes or hurricane spawned storms,** more frequent in Atlantic Provinces, as water temperatures in source region increase (2°C by 2050). Path of hurricanes unlikely to change but more intense storms will survive the long path from source regions in southern North Atlantic.

**Note 3:** Major floods and landslides (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. More flash floods from heavy rain and hurricane events – spring, summer, autumn.

**Note 4: Sea level and storm surges:** Rising sea level affects all coastal regions, exacerbated by storm surges from more frequent severe winter storms and hurricanes (see under WIND above). See: Storm surges for Gulf of St. Lawrence coast under New Brunswick and Prince Edward Island.

## **REGION: NEWFOUNDLAND***

## PAGE 1

	OBSERVE	BY 2050 (from 2010)		
TEMPERATURE	Temperature	°C (1950-2	007)	
	<u>poratare</u>	Max. °C	Min. °C	°C
	Annual	0 to -0.5	-1	2.5
See Notes 1	Winter	-1.5	-0.5 to -2.5	2 to 4
and 5	Spring	0.5	-0.5 to 0.5	2
	Summer	0.5 to 1	0.5 to 1.5	2 to 4
	Autumn	0	0.5 to 1	2 to 4
	·			
	Temperature	Extremes	1950-2007)	
	Frost Free Da		5 to 30	30
	Growing seas	son ≥5°C: 0	to 20W	20 central and West
PRECIPITATION	<b>Precipitation</b>	<u>(1950-2007</u>		
		Г	%	%
	Annual		10 to 15	5
	Winter		-5 to 5	10
See Note 1	Spring		0 to 10	5
	Summer		10	0 to 5
	Autumn		10	5
				5
	Ratio of Sno			0/
		<u>1950-2003)</u>	%	%
	Annual		3 6	-10
	Winter			-10
	Spring -6 Autumn 6			
	Autumn	-5		
	Intense Prec			
	P _{20:} 50 to 75r	P ₂₀ : 5 to 10%		
	Frequency he	$P_{20}$ : $\rightarrow P_{10}$		
	(>99%) incre	ase 2 to 4 da	ays over period	

• For Labrador, see North and Central Quebec and Labrador. (These are climatic, not political regions.)

#### NEWFOUNDLAND

#### PAGE 2

	OBSERVED TRENDS		BY 2050 (from 2010)
WIND See Note 2	Intense Winter Storms N. Hemisphere (1950-2000) <970hpa central pressure 8%		8 to 15%
	Significant Wave Heights (1950-2000) 2cm		5cm
	Hurricanes (Se	ee Note 2)	More frequent intense events
RIVERFLOW	Dates of Spring break-up (1950-2005) Earlier: non-significant trend		10 days
See Note 3	Streamflow (1967 Annual Minimum Daily	-10 to -30 except +10 SE -30	% -20 -30
	Maximum daily	10 to -10	0
SEA LEVEL See Note 4	Mean (1993-2007) 3.2cm/decade		15 to 25cm
Freezing Precipitation (1961-1990)	Rain plus drizzle Rain	50 hrs W to 150 hrs E 25 hrs W	Increase

Note 1: Ranges in observed and projected values indicate differences over the region.

Note 2: Wind-disaster records of Public Safety Canada indicate for storms >100km/h national frequency rose 16% from 1970 to 1990 with most in coastal regions, except for tornadoes. Hurricanes or hurricane spawned storms, more frequent in Atlantic Provinces, as water temperatures in source region increase (2°C by 2050). Path of hurricanes unlikely to change but more intense storms will survive the long path from source regions in southern North Atlantic.

**Note 3**: **Major floods and landslides** (from PSC data base), where intense rains, or rain on snow, apparently increased 80% nationally between the 1970s and 1990s. However, 1970s event recording may have been less thorough than in 1990s. Data base extends only to 2005. More flash floods in intense rain events and hurricanes – spring, summer, autumn.

#### NEWFOUNDLAND

#### PAGE 3

**Note 4: Sea level and storm surges:** 40 year return period storm surge ~1m near Middle Arm. Most of coast not vulnerable but beaches impacted by hurricanes 5 times from 1990 to 2005. Severe winter storms and hurricanes becoming more frequent, reducing return period and increasing damages (see under WIND above).

**Note 5: Newfoundland and Labrador and Eastern Arctic:** The North Atlantic Oscillation (NAO), linked to the Arctic Oscillation (AO), is a mode of the internal variation of the global climate system that periodically changes from positive to negative. In its positive phase it brings colder water and air to coastal regions of Eastern Arctic, Labrador and Newfoundland with strong north-easterly winds. The negative phase of NAO brings warmer conditions with warmer, drier winters especially in eastern coastal regions. Temperature trends from 1950 to 1998 reflect a mainly positive NAO phase. There is a hint in climate model outputs that positive NAO may be more frequent in a greenhouse gas forced climate. Thus, general warming in inland and western parts of Newfoundland and Labrador are likely to be faster than that felt along the east coast.

# **V** REFERENCE LIST

Abeysirigunawardena, D.S. and I. J. Walker, 2008. Sea level response to climate variability and change in northern British Columbia, Atmosphere-Ocean. 46.3:277-296.

Alexander, L.V., X. Zhang, et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation, J. of Geophysical Research, Vol. III,D05109, 42pgs.

Black, R., J.P. Bruce and M. Egener, 2009. Risk Management Guide for Community Adaptation to Climate Change in Alberta. adaptation.nrcan.gc.ca/projdb/pdf/176a_e.pdf (similar Guides have been developed for Southern Ontario, southern British Columbia and Northern Canada)

Bonfils C. et al, 2008. Detection and attribution of temperature changes in the mountainous western U.S. J. of Climate 21. 23:6404-6424.

Bonsal, B. and A. Shabbar, 2008. Impacts of large scale circulation variability on low stream flows over Canada's rivers. CWRJ 33.2:137-153.

Bruce, J. P. 2007. Oil and water – will they mix in a changing climate? The Athabasca R. story. Study for WWF Canada. 33 pp. + 3 Figs.

Burrows. W., et al., 2010. Canadian lightning data, Atmosphere-Ocean (in press).

Cheng, C.S., H. Auld, G. Li, J. Klassen and Q. Li, 2007. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios, Nat. Hazards and Earth Syst.Science.7:71-87.

Cheng, C. S., Li, Li and Auld. 2008. Statistical downscaling of hourly and daily climate scenarios for various meteorological variables in south-central Canada. Theor. Appl. Climatol. 91:129-147.

Dai, A. K., K. E. Trenberth, T, Qion, 2004. A global data set of Palmer Drought severity index for 1870 to 2002. J. of Hydrology 5:1117-1129.

Demuth, M. N., et al., 2008. Recent and past century variations in the glacier resources of Canadian Rocky Mountains. in Tetra Glacialis, Servizia Glaciologico Lombardo: 27-52.

Ehsanzadeh, S. and K. Adamowski, 2007. Detection of trends in low flow across Canada. Can. Water Resources J. 32.4:251-264.

Environment Canada, 2009. Canadian annual temperature trends 1948 to 2008.

Flannigan, M. D. et al., 2005. Future area burned in Canada. Climate Change 72.

Ghatak, D. et al., 2010. North America temperature and snowfall and snow depth response to winter climate modes. J. of Climate 23:2320-2332.

Goulev, S. K. et al., 2004. Last century change in wind-wave heights from global visual wave data. Geophys. Res. Letters 31.24:L24302.

Hanesiak, J. M. and X. L. Wang 2005. Adverse weather trends in the Canadian Arctic. J. of Climate 18.16: 3140-3156.

#### **REFERENCES** cont'd

Hudon, Christiane, et al., 2009. Variations in water temperatures and levels in the St. Lawrence River and potential implications for 3 common fish species: Hydrobiologia, Springer publ. on line 14 Sept. 2009.

Intergovernmental Panel on Climate Change, 2007. V.1 The Physical Science Basis and V.2 Impacts, Adaptation and Vulnerability, Cambridge University Press, 2008.

International Upper Great Lakes Study, 2009. Impacts on Upper Great Lakes Water Levels: St. Clair River: Report to International Joint Commission, Dec. 2009, 224p.

Karl, T.R., J.M. Melillo and T.C. Peterson, (eds.) 2009. Global climate change impacts in the United States, U.S. Global Change Research Program, Cambridge University Press, 188p.

Kaliq, M. N. et al., 2008. Temporal evolution of low flow regimes in Canadian rivers. Water Resources Res. 44.W08346, doc 1029/2007 WR006132.

Kharin, V.V., F.W. Zwiers, X. Zhang and G.C. Hegerl, 2007. Changes in temperature and precipitation extremes in IPCC ensemble of Global Coupled Model Simulations, J. of Climate 20.8:1419-1444.

Kochtubadja, B., et al., 2006. Lightning and Fires in the Northwest Territories and Responses to Future Climate Change, Arctic 59.2:211-221.

Lambert, S.J., 2004. Changes in winter cyclone frequencies and strengths in transient enhanced greenhouse warming simulations using two coupled models, Atmosphere-Ocean 42.3:173-181.

Lemmen, D.S., F.J. Warren, J. Lacroix, E. Bush, eds., 2008. From impacts to adaptation: Canada in a changing climate, 2007, Natural Resources, Government of Canada, Ottawa, 448p.

LeQuere, C., 2009. Closing the global budget for CO₂, Global Change 74:28-31, Intl. Geosphere Biosphere Program (IGBP).

Lesins, G. et al. 2010. Climate trends at Eureka in the Canadian High Arctic. Atmosphere-Ocean 42.2:59-80, June.

McBean, G. R. et al., 2005. Arctic Climate: Past and Present. Ch. 2 in Arctic Climate Impact Assessment (ACIA), Cambridge Univ. Press. (and other chapters in ACIA)

Meteorological Service, Environment Canada, 2007. Icewatch 2007: Changes in lake ice signal a, 12p.

Mills, E., 2005. Insurance in a climate of change, Science, V.309:1040-1044, 12 Aug.

Minder, J. R., 2010. Sensitivity of mountain snowpack accumulation to climate warming. J. of Climate 23: May, 2634-2650.

Mote, P.W., et al., 2003. Declining snowpack in western North America, Bull. Amer. Met. Soc. 86:39-49.

Phillips, D., 1990. The Climates of Canada, Government of Canada, Ottawa, 176p.

Phillips, D., 2010. Top 10 Canadian weather stories for 2009, CMOS Bull. 38.1:18-24.

Price, C and D. Rind, 1994. Possible implications of global climate change on global lightning distribution and frequencies, J. of Geophys. Res. 99:10823-10831.

### **REFERENCES** cont'd

Stuart, R.A. and G.A. Isaac, 1999. Freezing precipitation in Canada, Atmosphere-Ocean, 37.1:87-102.

Tarnocai, C., 2009. The impact of climate change on Canadian peatlands, Can. Water Resources Journal, 34.4:467-485.

Vincent, L.A. and E. Mekis, 2009. Trends in temperature and precipitation indices in Canada for the periods 1950-2007 and 1900-2007, Draft, Environment Canada, Nov. 2009. Walker, I. and R. Sidneysmith, et al. 2008. Ch. 8 in From Impacts to Adaptation. D. S. Lemmen et al. eds: 329-386.

Zhang, X., L. A. Vincent, W.D. Hogg and A. Nitsoo, 2000. Temperature and precipitation trends in Canada during the Twentieth century, Atmosphere-Ocean 38.3:481-503.

Zhang, X., K.D. Harvey, W. D. Hogg and T.R. Yuzyk, 2001. Trends in Canadian streamflow, Water Resources Research 37.4:987-998.